Object Identification in a Bayesian Context

نویسندگان

  • Timothy Huang
  • Stuart J. Russell
چکیده

Object identification—the task of deciding that two observed objects are in fact one and the same object—is a fundamental requirement for any situated agent that reasons about individuals. Object identity, as represented by the equality operator between two terms in predicate calculus, is essentially a first-order concept. Raw sensory observations, on the other hand, are essentially propositional— especially when formulated as evidence in standard probability theory. This paper describes patterns of reasoning that allow identity sentences to be grounded in sensory observations, thereby bridging the gap. We begin by defining a physical event space over which probabilities are defined. We then introduce an identity criterion, which selects those events that correspond to identity between observed objects. From this, we are able to compute the probability that any two objects are the same, given a stream of observations of many objects. We show that the appearance probability, which defines how an object can be expected to appear at subsequent observations given its current appearance, is a natural model for this type of reasoning. We apply the theory to the task of recognizing cars observed by cameras at widely separated sites in a freeway network, with new heuristics to handle the inevitable complexity of matching large numbers of objects and with online learning of appearance probability models. Despite extremely noisy observations, we are able to achieve high levels of performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the underlying factors affecting information seeking behavior of users interacting with the visual search option in EBSCO: a grounded theory study

Background and Aim: Information seeking is interactive behavior of searcher with information systems and this active interaction occurs in a real environment known as background or context. This study investigated the factors influencing the formation of layers of context and their impact on the interaction of the user with search option dialoge in EBSCO database. Method: Data from 28 semi-stru...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Source Conflicts in Bayesian Identification

In Bayesian identification an ID source is in conflict with the other ID sources, if both provide substantially different, reliable information on a tracked object. After discussing some general aspects of source conflicts and introducing two established conflict-definition approaches, it is denoted that these approaches each show a counterintuitive effect. By applying a conflict definition fro...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997